Quantum phases and rotations rely on sine/cosine. Unit complex numbers sit on the unit circle: $$e^{i\theta} = \cos\theta + i \sin\theta$$ Small rotations compound.
\(\cos\theta - i\sin\theta\) is the complex conjugate on the unit circle.
\(\cos\alpha \cos\beta - \sin\alpha \sin\beta\).
\(\sin\theta \approx \theta\), \(\cos\theta \approx 1 - \tfrac{\theta^2}{2}\).