Trigonometry

← Back to Learn

Summary

Quantum phases and rotations rely on sine/cosine. Unit complex numbers sit on the unit circle: $$e^{i\theta} = \cos\theta + i \sin\theta$$ Small rotations compound.

  • SU(2) rotations: $$R(\theta) = \begin{bmatrix}\cos\theta & -\sin\theta \\ \sin\theta & \cos\theta\end{bmatrix}$$
  • Angles in radians are natural for gates
  • Phase shifts add: $$e^{i\alpha}e^{i\beta} = e^{i(\alpha+\beta)}$$

Practice

1) If \(e^{i\theta} = \cos\theta + i\sin\theta\), what is \(e^{-i\theta}\)?

\(\cos\theta - i\sin\theta\) is the complex conjugate on the unit circle.

2) Compute \(\cos(\alpha+\beta)\) in terms of \(cos\)/\(sin\).

\(\cos\alpha \cos\beta - \sin\alpha \sin\beta\).

3) For small \(\theta\), approximate \(\sin\theta\) and \(\cos\theta\) to first order.

\(\sin\theta \approx \theta\), \(\cos\theta \approx 1 - \tfrac{\theta^2}{2}\).